Intramolecular Carbolithiation as a Route to a Sterically Congested Cyclopentene: Synthesis of the Longtailed Mealybug Pheromone

William F. Bailey* and Johanna M. Bakonyi

Department of Che[mist](#page-1-0)ry, University of Connecticut, Storrs, Connecticut 06269-3060, United States

S Supporting Information

[AB](#page-1-0)STRACT: [A concise pr](#page-1-0)eparation of the pheromone secreted by the female longtailed mealybug [viz., 2-(1,5,5-trimethylcyclopent-2-en-1-yl)ethyl acetate (1) is described. The key step in the synthesis of 1 involves 5-exotrig ring closure of the vinyllithium derived from (Z)-1-iodo-4,4,5-trimethyl-1,5-hexadiene by lithium−iodine exchange.

Several years ago, Millar and co-workers reported the isolation and characterization of the pheromone secreted
by the fomale longituded monkham (Beaudeceaux longitudinal)¹ \bigcup isolation and characterization of the pheromone secreted
by the female longtailed mealybug (*Pseudococcus longispinus*).¹ The structure of this unusual monoterpene (1) features contiguous quaternary centers in a cyclopentene framewor[k,](#page-2-0) and any synthesis of 1 must address the problem posed by this congested architecture.²

Three syntheses of racemic 1 have been reported by Millar's group, and each sets the adjacent quaternary centers in the cyclopentene ring at an early stage in the process.^{1,3,4} It occurred to us that intramolecular carbolithiation might offer a straightforward route to the pheromone: the retrosynt[hesis](#page-2-0) is depicted below. The approach suggests that the challenge posed by the quaternary centers in 1 might be addressed in the penultimate step of the synthesis via a 5-exo-trig ring closure of a vinyllithium tethered to a suitably functionalized alkene. The vinyllithium, in turn, would be derived from the corresponding vinyl iodide by lithium−iodine exchange.5,6

The requisite vinyl iodide (2) was prepared in two steps as illustrated in Scheme 1. Alkylation of the lithium enolate

derived from 3-methylbut-2-en-2-yl acetate⁷ with (Z) -3-bromo-1-iodopropene⁸ following House's protocol⁹ proceeded uneventfully to give ketone 3. Attempts to [co](#page-2-0)nvert 3 to 2 using standard Witt[ig](#page-2-0) chemistry resulted in a mi[xt](#page-2-0)ure of products including an unacceptably large quantity of alkyne generated by dehydrohalogenation of the vinyl iodide moiety. Fortunately, Utimoto's olefination procedure,¹⁰ employing a CH₂Br₂− TiCl₄−Zn system containing catalytic PbCl₂, cleanly afforded isomerically pure 2.

It was clear from our previous experience constructing less congested cylopentanoids, such as (\pm) -cuparene¹¹ and (\pm) -laurene,¹² that intramolecular carbolithiation of the vinyllithium derived from 2 would require warm[ing](#page-2-0) the organolithiu[m](#page-2-0) in the presence of TMEDA to facilitate the cyclization. Consequently, all reactions involving organolithiums were conducted under an atmosphere of argon using scrupulously dry and oxygen-free solvents and reagents.

Treatment of an approximately 0.1 M solution of 2 in npentane/diethyl ether (9:1 by vol) at −78 °C with 2.2 molar equiv of tert-butyllithium (t-BuLi) served to cleanly generate the corresponding vinyllithium as demonstrated by the outcome of the synthesis of 1 depicted in Scheme 2: there was no evidence of alkyne formation in the course of the lithium−iodine exchange when conducted using th[es](#page-1-0)e conditions.¹³ Addition of 2.2 molar equiv of TMEDA at −78 °C, removal of the cooling bath, and allowing the reaction mixture to war[m](#page-2-0) and stand at room temperature for 1 h effected the ring closure. The reaction mixture was recooled to −78 °C, and the (1,5,5-trimethylcyclopent-2-enyl)methyllithium product was trapped by reaction with dry paraformaldehyde¹⁴ to afford alcohol 4 in 65% isolated yield (Scheme 2). Acylation of 4 following Millar's procedure^{1,3} completed the synt[hes](#page-2-0)is of 1.

The concise synthesis of racemic 1 pres[en](#page-1-0)ted in Schemes 1 and 2 is arguably the most d[irec](#page-2-0)t preparation of the pheromone that has been reported to date. More generally, the three-step

Rec[eiv](#page-1-0)ed: January 30, 2013 Published: March 7, 2013

(exchange−cyclization−trapping), one-pot conversion of 2 to 4 in 65% yield illustrates the efficiency of intramolecular carbolithiation as a route to congested carbocyclic systems.

EXPERIMENTAL SECTION

General Procedures. Spectroscopic and chromatographic procedures, methods used for the purification of reagents and solvents, as well as precautions regarding the manipulation of organolithiums have been previously described.¹⁵ Paraformaldehyde was dried with P_2O_5 for 2 days under vacuum in a drying pistol heated with refluxing methanol.

(Z)-6-Iodo-3,3-dimet[hy](#page-2-0)lhex-5-en-2-one (3). Following the general procedure of House and co-workers,⁹ a flame-dried, roundbottomed flask was charged under argon with 10 mg of 2,2-bipyridyl and 37 mL of a 1.4 M solution of methyllithiu[m](#page-2-0) (52 mmol) in diethyl ether. The solution was stirred under a flow of argon at room temperature for 30 min to evaporate some of the diethyl ether. Dry 1,2-dimethoxyethane (60 mL) was then added, the solution was cooled to 0° C in an ice bath, and 3.33 g (26 mmol) of 3-methylbut-2en-2-yl acetate⁷ was added dropwise with a syringe until the color of the solution changed from a dark red-purple to a light red-orange (indicating th[e](#page-2-0) presence of a slight excess of methyllithium). (Z)-3- Bromo-1-iodopropene⁸ (6.90 g, 27.9 mmol) was added rapidly; the resulting solution was stirred for 45 min at 0 °C and then 30 min at room temperature. Pe[n](#page-2-0)tane (60 mL) and saturated aqueous $NaHCO₃$ (50 mL) were added and the layers separated. The aqueous phase was saturated with NaCl and then extracted with additional pentane. The combined organic layers were dried $(MgSO₄)$ and concentrated to yield 4.52 g (64%) of the title iodoketone as a clear oil: $^1{\rm H}$ NMR (400 MHz) δ 6.33 (dt, J = 7.5 Hz, J = 1.3 Hz, 1H), 6.07 (q, J = 7.1 Hz, 1H), 2.38 (dd, J = 6.9 Hz, J = 1.3 Hz, 2H), 2.15 (s, 3H), 1.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 137.4, 85.4, 47.9, 44.2, 25.4, 24.5; HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_8H_{14}IO$, 253.0089; found, 253.0105.

(Z)-1-Iodo-4,4,5-methyl-1,5-hexadiene (2). A flamed-dried, round-bottomed flask was charged under an atmosphere of argon with 7.02 g (108 mmol) of activated Zn dust,¹⁶ 100 mg of PbCl₂, and 60 mL of dry THF. Dibromomethane (10.44 g, 60 mmol) was added, the mixture was stirred at 25 °C for 30 min, [an](#page-2-0)d then cooled to 0 °C before 15 mL of a 1.0 M solution of $TiCl₄$ in dichloromethane (15 mmol) was added. The resulting mixture was stirred at 25 °C for 30 min before 3.02 g (12.0 mmol) of 3 dissolved in 30 mL of THF was added dropwise with a cannula. After stirring for 1 h at room temperature, the reaction mixture was diluted with ether (30 mL), washed with 1 M HCl (60 mL) and brine (50 mL), dried $(MgSO₄)$, and concentrated. Purification by column chromatography [50 g of silica gel, using pentane as eluent $(R_f = 0.65)$] gave 1.60 g (53%) of the title compound as a clear oil: ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, J $= 5.8$ Hz, 1H), 6.04 (apparent q, J = 6.8 Hz, 1H), 4.77 (s, 1H) 4.72 (s, 1H), 2.21 (d, J = 6.6 Hz, 2H), 1.74 (s, 3H), 1.09 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 151.7, 139.0, 110.2,83.7, 45.6, 39.1, 27.3, 19.7; HRMS-ESI (m/z) $[M + H]^+$ calcd for C₉H₁₆I, 251.0297; found, 251.0285.

2-(1,5,5-Trimethylcyclopent-2-en-1-yl)ethanol (4). A flamedried, round-bottomed flask was charged with 500 mg (2.00 mmol) of 2 in 20 mL of a 9:1 (by vol) ratio of dry $n-C_5H_{12}/Et_2O$. The solution was cooled to −78 °C, and 2.0 mL of a 2.19 M solution of t-BuLi in pentane (4.4 mmol) was added dropwise. The solution was stirred at −78 °C for 10 min, and then 0.60 mL (4.0 mmol) of dry TMEDA was added. The resulting mixture was removed from the cold bath and stirred in a desiccator until it turned bright yellow (∼1 h). The mixture was then recooled to −78 °C, and 90 mg (3.0 mmol) of dry paraformaldehyde in 1 mL of diethyl ether was added. The bath was again removed, and the solution was stirred at room temperature until the reaction mixture turned white (∼1.5 h). Saturated ammonium chloride (2 mL) was added to quench the reaction; 10 mL of brine was added, and the layers were separated. The organic layer was dried (MgSO4), concentrated, and the residue was purified by column chromatography [40 g of silica gel using 0-20% Et₂O/n-C₅H₁₂; R_f $(20\% \text{ Et}_2\text{O}/n\text{-C}_5\text{H}_{12}) = 0.15$ to give 200 mg (65%) of the title compound as a clear oil: ¹H NMR (400 MHz, CDCl₃) δ 5.63–5.61 (m, 1H), 5.58−5.55 (m, 1H), 3.77−3.69 (m, 2H), 2.12 (q, J = 2.2 Hz, 2H), 1.70−1.63 (m, 1H), 1.57−1.50 (m, 1H), 0.96 (s, 3H), 0.93 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 128.3, 61.0, 49.7, 47.1, 44.3, 39.5, 25.0, 24.2, 19.7; HRMS-ESI (m/z) $[M + H]$ ⁺ calcd for $C_{10}H_{19}O$ 155.1436; found, 155.1415.

2-(1,5,5-Trimethylcyclopent-2-en-1-yl)ethyl acetate (1). Under argon, 0.21 mL of acetyl chloride (3.0 mmol) was added to a stirring solution of 310 mg (2.01 mmol) of 4 and 0.32 mL of pyridine in 10 mL of dry Et_2O at 0 °C. The ice bath was removed, and the reaction mixture was stirred at room temperature for 4 h. Water (10 mL) and pentane (10 mL) were added and the layers separated. The organic layer was washed with 1 M HCl, saturated aqueous $NAHCO₃$, and brine, dried $(MgSO₄)$, and concentrated. Purification by column chromatography [30 g of silica gel using 0-10% Et₂O/n-C₅H₁₂ (R_f $(10\% \text{ Et}_2\text{O}/n\text{-C}_5\text{H}_{12}) = 0.42$)] gave 340 mg (86%) of 1: ¹H NMR (400 MHz, CDCl₃) δ 5.63–5.62 (m, 1H), 5.56–5.54 (m, 1H), 4.22– 4.16 (m, 1H), 4.12−4.05 (m, 1H), 2.13 (apparent s, 2H), 2.04 (s, 3H), 1.72−1.66 (m, 1H), 1.60−1.54 (m, 1H), 0.95 (s, 3H), 0.94 (s, 3H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 139.0, 128.5, 63.0, 49.7, 47.1, 44.3, 34.8, 24.9, 24.3, 21.4, 19.6; HRMS-ESI (m/z) $\rm [M+H]^+$ calcd for $\rm C_{12}H_{21}O_2$ 197.1542; found, 197.1555. These NMR data were identical to those reported for this compound.^{1,3}

■ ASSOCIATED CONTENT

6 Supporting Information

NMR spectra of products. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORM[ATION](http://pubs.acs.org)

Corresponding Author

*E-mail: william.bailey@uconn.edu.

Notes

The auth[ors declare no competing](mailto:william.bailey@uconn.edu) financial interest.

■ ACKNOWLEDGMENTS

We are grateful to Dr. Terry L. Rathman of Optima Chemical, Douglas, GA, for generous gifts of t-BuLi and n-BuLi. This work was supported by a grant from Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut.

■ REFERENCES

(1) Millar, J, G.; Moreira, J. A.; McElfresh, J. S.; Daane, K. M.; Freund, A. S. Org. Lett. 2009, 11, 2683.

(2) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, J., Baro, A., Eds.; John Wiley & Sons: New York, 2006.

(3) Zou, Y.; Millar, J. G. J. Org. Chem. 2009, 74, 7207.

(4) Zou, Y.; Millar, J. G. Synlett 2010, 15, 2319.

(5) Bailey, W. F.; Punzalan, E. R. J. Org. Chem. Soc. 1990, 55, 5404.

(6) (a) Bailey, W, F.; Luderer, M. R.; Uccello, D. P.; Bartelson, A. L.

J. Org. Chem. 2010, 75, 2661. (b) Bailey, W. F.; Wachter-Jurcsak, N. M.; Pineau, M. R.; Ovaska, T. V.; Warren, R. R.; Lewis, C. E. J. Org. Chem. 1996, 61, 8216.

(7) House, H. O.; Prabhu, A. V.; Phillips, W. V. J. Org. Chem. 1976, 41, 1209.

(8) Brasseur, D.; Marek, I.; Normant, J. F. Tetrahedron 1996, 52, 7235.

(9) House, H. O.; Gall, M. Organic Syntheses; Wiley: New York, 1988; Collect. Vol. 6, pp 121−130.

(10) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994, 59, 2668.

(11) Bailey, W. F.; Khanolkar, A. D. Tetrahedron 1991, 47, 7727.

(12) Bailey, W. F; Jaing, X.-L.; McLeod, C. E. J. Org. Chem. 1995, 60, 7791.

(13) Dehydrohalogenation is a potentially serious complication when vinyl bromides or iodides are treated with t-BuLi. Indeed, when THF is employed as solvent for the lithium−bromine exchange, the reaction must be conducted at temperatures below −110 °C to minimize alkyne formation (Neuman, H.; Seebach, D. Chem. Ber. 1978, 111, 2785 and references therein). When the reaction is run in a solvent system containing $Et₂O$ rather than THF, the vinyllithium may be generated cleanly at a more experimentally convenient temperature of −78 °C (ref 6).

(14) Schaap, A.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1965, 84, 1200.

(15) Bailey, W. F.; Khanolkar, A. D.; Gavaskar, K.; Ovaska, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B. J. Am. Chem. Soc. 1991, 113, 5720.

(16) Fieser, L. F; Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 1967; Vol. 1, p 1276.